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Calculation of solar radiation arriving to the outer fringe  
based on astronomical ephemerides DE 406. 

V. M. Fedorov, А.А. Kostin 
Introduction 

Solar radiation arriving to the Earth alters both in time and space. Variation 
of arriving solar radiation is determined by two basic reasons, which have different 
physical nature. First, solar radiation variations are determined by the Sun physical 
activity shift (Willson, 1982;  Frohlich, 1989; Frohlich et al., 1998; Makarova et 
al., 1991; Foukal et al., 2006; Willson, Mordvinov, 2003; http://www.sidc.be/; 
http://www.pmodwrc.ch/). The said variations are not considered in our calcula-
tions. Second, variations of solar radiation arriving to the Earth are determined ce-
lestially, by mechanical processes. These variations of solar stream, until the pre-
sent day, have been basically studied in geological scale of time which is known to 
be rather sustained. Calculations of solar radiation, however, do not cover such as-
tronomical elements, exposed to secular perturbations, as longitude of perihelion, 
ellipticity, Earth’s axis inclination, which have long (tens of thousands years) peri-
ods of variations. Periodical perturbations of the Earth’s orbit elements in this case 
are not considered (Milankovich, 1939; Brouwer, Van Woerkom, 1950; Sharaf, 
Budnikova, 1969; Vulis, Monin, 1979; Berger, Loutre, 1991, Monin, Shishkov, 
2000). Calculations within the range of the Earth’s orbit elements periodical per-
turbations and solar radiation variations connected with them, were started in A. I. 
Voyeikov Main Geophysical Observatory (Borisenkov, 1983). However, this re-
search did not result in any further development. Though, calculations of solar ra-
diation arriving to the outer fringe are believed to be of importance, since the ac-
quired values are an initial basis for the Earth radiation balance and its specific ge-
ospheres. 
 Opposed to the approach of M. Milankovich (Milankovich, 1939) and his 
successors (Brouwer, Van Woerkom, 1950; Sharaf, Budnikova, 1969; Vulis, Mon-
in, 1979; Berger, Loutre, 1991), who considered long-term intervals of time, we 
made a point of a more detailed calculation for solar radiation arriving over a 
shorter time interval. In which case, we took into account the Earth’s orbit ele-
ments and Earth axis inclinations periodical perturbations. 

Basic ideas of our approach are: distance from the Earth to the Sun and Earth 
axis orientation are taken from NASA’s accurate model DE-406 
(http://ssd.jpl.nasa.gov), Earth ellipsoid is divided into latitudinal bands, and each 
tropical year—into segments, and each pair (band, segment) is associated with an 
integral (J) of insolation (W/m2) to a band from end to end of a segment. By divid-
ing the integral by a band square we obtain specific energy (J/m2), collected by a 
band within a segment. By multiplying the integral by ratio of a band fragment 
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length to the band length we obtain assessed value of energy (J), collected by this 
fragment within the segment. 
 To calculate the said values, a number of theoretical simplications was intro-
duced. Basic simplications: solar activity is considered constant, irradiation—
coming from the centre of the Sun, Earth atmosphere influence is ignored. All the-
oretical simplications are stated in section 1. Pure formulae for calculations are 
given in section 2. Tried technology of rough calculations and their typical toler-
ance are discussed in section 3. Tendencies of arriving solar radiation variation are 
discussed in section 4. 

1. The selected approach towards description of arriving solar radiation 
 Considered period of time is from 3000 BC to 2999 AD. The Earth’s surface 
approximates ellipsoid, hereinafter referred to as MRS80, swaying against geoid, 
with major semiaxes lengths of p1=p2=A=6378137 m and minor semiaxis length of 
p3=B=6356752 m. Minor semiaxis at each moment lies in the Earth’s axis, and el-
lipsoid centre—in geocenter. Semiaxes lengths with rounding to one meter corre-
spond to parameters of overall Earth ellipsoid GRS80, which is fixed relative to 
geoid1. 

__________________________________________________________________ 
(1) parameters of GRS80 (Geodetic Reference System 1980) are recommended for use by Inter-
national Union of Geodesy and Geophysics in 1980. Definition of MRS80: Moving Reference 
System 1980. 

__________________________________________________________________ 
 
Swaying ellipsoid MRS80 is provided with imaginary scale of parallels and 

meridians, system of normals and geodetic coordinates, whereby vertical lines, 
horizontal planes and latitudinal zones of Earth are determined. These lines, planes 
and zones together with ellipsoid slightly sway against the geoid. 

Swayings are connected with the Earth’s axis inclination from its midposi-
tion within the Earth body. Inclinations have been registered from the end of the 
19th century in terms of geographic poles movement2. 
__________________________________________________________________ 
(2) Each of geographic poles moves against the geoid along a multiturn open curve which fits 
within a 30m square. One turn (Chendler’s cycle) lasts for about 14 months. 

__________________________________________________________________ 
  
 Swaying ellipsoid has been chosen instead of a fixed one for two reasons: 
first: to avoid adding complexity to calculations, and because of the lack of a sound 
swaying model, which would embrace the whole time span examined. 
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 In the absence of obstacles for rays, solar radiation which achieves a given 
point of the Earth surface, in general, will be resolved on vertical (normally against 
the surface) and horizontal (horizontal tangent against the surface) constituents. 
Vertical constituent hereinafter will be referred to as falling vertical radiation 
(FVR). 
 We consider a model of solar radiation and its imaginary measurement on 
the Earth’s surface according to which: 

1) isotropic radiation comes to the Earth from the center of the Sun3, 
__________________________________________________________________ 
(3) Hence, the solar radiation power density decreases as the inverse square of the distance from 
the center of the Sun. 

__________________________________________________________________ 
2) eclipses are ignored, 
3) radiation power density at a distance of 1 A.U. from the center of the Sun at 

each moment equals to u0=1367 W/m2, where 1 A.U. =r0=149597870691 m, 
4) dissipating effect of the atmosphere is ignored, 
5) the Earth’s surface is substituted with swaying ellipsoid MRS80. 

Swaying ellipsoid is split into -degree longitudinal bands (geodetical lati-

tude is implied)4, where {1, 5}. 
__________________________________________________________________ 
(4)  Projection of each band against the geoid “floats” in relations to the geoid (type of move-
ment is various ring displacements), departing from its midposition as much as 15 meters in ac-
cordance with Chendler cycles. 

__________________________________________________________________ 
FVR integrals are calculated – energy (in Joules), arriving to the Earth via 

each of the bands in each of the L segments within each tropical year examined, 

where L{12, 360}, and linear combinations of these integrals (tropical decades, 
months, quarters, half-years, years). 

Tropical years were chosen instead of calendar years to avoid the four-year 
calendar rhythmics. Number of a tropical year aligns with the number of the calen-
dar year within which it starts. Tropical year stands for projective tropical year 
tracked by movement of the Sun projection against ecliptic. If L is a number of 
segments into which a projective tropical year shall be divided, an nth segment 
starts at the moment when ecliptic longitude of the Sun adopts a value of 360(n–
1)/L (in degrees). 

To take account of day elongation due to gradual slow-down of the Earth ro-
tation we differentiate the calendar time scale within which a single day corre-
sponds to a massive of 86400 calendar seconds, and scale of uniformly running 
time, according to which daily intervals are measured in true seconds and are not 
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equal to each other. Solar radiation integrals are calculated according to scale of 
uniformly running time. 
 Imaginary clock keeping account of uniformly running time is situated in the 
center of the Earth. An event on a small area of the Earth (“a dose of solar radia-
tion arrived”) is related to the axle of uniformly running time in the following way. 
We assume a moment of a corresponding dose bundle imaginary start from the 
center of the Sun. A dose directed towards the center of the Earth is deposited from 
this bundle. A moment of imaginary arrival of this dose to the Earth’s center is cal-
culated (assuming absence of obstacles on its way). This arrival moment is selected 
as the one to which the said event shall be related to. 

Small (20-40ms) delays (various in various areas of a band) may emerge for 
this way of relation. Although, from the point of view of large scale Earth process-
es such systematic delays of relation are omissible. They are equivalent to small 
(about 30ms) displacements of tropical years segments boundaries. A variant with 
delays has been chosen for the reason that their exclusion could result in excessive 
complication of calculations. 

2. Pure Formulae for Calculations 
According to the chosen model of solar radiation and its measurement, cal-

culation of FVR integrals (in Joules) leans upon calculation of vertical insolation 
Λ(t,φ,α) (W/m2), which would be observed in the absence of the Earth atmosphere 
in a specific moment, in a specific point of MRS80. Here t is a moment at the scale 
of uniformly running time (с), φ and α – expressed in radians geodetic latitude (in 
relation to MRS80) and sliding longitude (clocking angle transferred into radians) 
are the points of imaginary measurement of FVR.  

Elementary fragment of a tropical year may be obtained via its splitting into 
360 parts. FVR energy, arriving to the Earth via a band of enclosing surface, lim-
ited by latitudes φ1 and φ2 (in radians), in nth elementary fragment of mth tropical 
year, let us designate as Inm(φ1,φ2). FVR energy, arriving via the same band within 
the qth segment of mth tropical year, let us designate as Jqm(φ1,φ2). We have 
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where σ(φ) is an areal multiplier at the position of imaginary measurement of solar 
radiation. With its help we can calculate σ(φ)dαdφ – square (m2) of an eternally 
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small trapezium on ellipsoid MRS80. Length of trapezoid median (along local par-

allel): q1()d, trapezoid altitude (along local meridian): q2()d . We have 
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Let b(t) be a moment of start from the center of the Sun of an imaginary light 
impulse achieving the Earth’s center at the moment t. Let us assume that in the 
moment b(t), r(t) is the distance (m) between centres of the Sun and the Earth, γ(t) 
is declination of the center of the Sun in radians, λ(t) is ecliptic longitude of the 
center of the Sun in degrees. Subsequently 
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A=6378137, B=6356752, r0=149597870691, u0=1367                 (10) 
 
Before integrating by formula (2), it would be useful to ask yourself: if t, φ 

are specified, then at which α VFR would exist? Range of α, from the interval 

(,), at which VFR would be observed, is determined by inequation 
),(||  tM , where ),(  tM  is a limit of FVR observability at a specified latitude 

φ. If a specified latitude φ is close to 0, then αm at measurement of t will fluctuate 
within small locality π/2. In case of specified latitude module increment, amplitude 
of oscillation αm will increase. If |φ| is close to π/2, then interval of oscillation αm 
will spread from 0 to π, in which case αm will take extreme values and, will dwell 
on them. In periods, when αm = 0, at the specified latitude there will be polar night. 
Within periods, when αm = π, at the specified latitude there will be polar day. 

If αь = 0, then FVR at specified values of t,  will not be observed. In this 

case, vertical insolation at =0 equals to 0. If αm>0, then with increase of || verti-

cal insolation decreases from positive maximum at =0 to some minimum at || = 
αm. If αm<π, then the minimum equals to 0. If αm = π, then the minimum will either 
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be equal to 0, or more than 0 (between the start and the end of polar day). In the 

second case FVR exists not only at ||<αm, but also at ||=αm. 
One of the properties of vertical insolation is evenness by α: Λ(t,φ,α) = 

Λ(t,φ,–α). Taking this property into account, formula (2) may be modified to a 
form which is more convenient for calculation 
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3. Approximate calculation and their errors in case of =5, L=12 

3.1. Plan of calculations 
 Calculations by formulae (1), (3)-(13) cannot be made with absolute accura-
cy. Inaccuracies are peculiar for initial data, procedures of interpolation and search 
of equation roots during processing of initial data and integration procedures. 

For a variant when =5, L=12 we have tried the following system of approx-
imate calculation, corresponding to formulae (1), (3)-(13).  

The first stage is a work marking of the used time scales, addressing to the 
HORIZONS NASA internet-service 
(http://ssd.jpl.nasa.gov/?horizons_doc#specific_quantities; Giorgini et al., 1996) 
and acquisition of primary initial data, associated with starts of days GMT. Prima-
ry data, the Earth-Sun distance (km), declination and ecliptic longitude of the Sun 
(degrees), and path difference (с) uniformly flowing and discontinued (adjustable) 
worldwide time. 

The second stage is calculation of displacements of tropic years elementary 
fragments starts and ends in relation to starts of days GMT (for this, search of 
equations roots with participation of ecliptic longitude) and, at this basis, gathering 
of secondary initial data, associated with starts, ends and intermediate moments of 
elementary fragments of tropic years (for this there is interpolation of primary da-
ta). Secondary initial data are: distance Earth-Sun (m), declination of the Sun (ra-
dians), and durations of fragments (с) at the scale of uniformly flowing time. 

The third stage is calculation of FVR integrals by means of secondary initial 
data (for this there is calculation of auxiliary variables and their substitution into 
integration procedures). 
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3.2. Three time scales and their work marking 
There are three scales used: CT (Coordinate Time – coordinate, the same as 

uniformly flowing time), UT1 (Universal Time Without Correction – continuous 
worldwide time) and UT2=UTC (Universal Time With Correction – discontinuous 
worldwide time). Scale UT2 results from scale UT1 by episodical (once in several 

years) movements by 1 calendar second for path aligning of UT2-clock with CT-
clock (since 1962).  

Measurement unit of scale СТ is a true second. At CT scale there are two 
markings: tropical and calendar. Tropical marking consists of main moments {tnm1, 
tnm2} – starts and ends of tropic years elementary fragments and intermediate mo-
ments {tnm4/3, tnm5/2}: 

q{4/3,5/3}  tnmq= tnm1 + (q–1) ( tnm2–tnm1)                         (14) 
Tropic marking spreads from the first fragment of tropic year 3000BC till 

the last fragment of tropic year 2999AD. True duration  dnm  (in true seconds)  of 
nth fragment mth of tropic year equals to 

dnm = tnm2 – tnm1                                                   (15) 
 Calendar marking {tk} consists of starts of days GMT: zero day corresponds 
to data 3000BC-02-23, hereafter continuous numbering till the date 3000AD-05-
05. Moments {tk}, specified at the scale CT, correspond to moments {T1k} at scale 
UT1 and moments {T2k} at scale UT2 (calendar seconds are counted by these 
scales): 

T1k = 86400k, T2k – T2(k1) – (T1k–T1(k1)){1,0,1}                      (16) 
 Further we use functions τ1(·) and τ2(·): 
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Their sense: τ1(tk) – accurate, τ2(tk) – approximate duration of a day with number k 
in true seconds,  

τ2(tk)–τ1(tk){1,0,1}                                        (18) 

Sequence {tk–T2k} is a part of primary initial data. For acquisition of {1(tk)} at 
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signment: 

   












)5.0(&)5.0()),()((2)(

)5.0()5.0(),(
)(

1221222

12
1

kkkkk

kkk
k xxttt

xxt
t




               (19) 

3.3. Retrieval of primary initial data 

Primary initial data is a block of values of type r(tk)/1000, (180/)(tk), 

(180/)(tk), tk–T2k. Here r/1000 is a distance between centers of the Sun and the 

Earth in kilometers, 180/ and 180/ declination and ecliptic longitude of the 
center of the Sun in degrees, tk–T2k – path difference of CT-clock and UT2-clock in 

seconds. As it was mentioned in section 2, values r(t),  (t), (t), registered at the 
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moment t, refer to an earlier moment b(t) (adjustment for running of a light im-
pulse from the center of the Sun to the center of the Earth). 
 Primary initial data was retrieved by us from ephemerides NASA DE406 by 
means of the HORIZONS internet-service. In the inquiries made we set the follow-
ing parameters (for Time Span there is an example): 

Ephemeris Type = OBSERVER, 
Target Body = Sun [Sol] [10], 

Observer Location = Geocentric [500],  
Time Span = Start=2001-01-01, Stop=2200-12-31, Step=1 d 

Table Settings = QUANTITIES=2,20,30,31; extra precision=YES. 
3.4. Calculation of secondary initial data by primary data 

Secondary initial data is a block of values of the type r(tnmq), (tnmq), dnm, 

where q{1,4/3,5/3,2}. Secondary data is calculated by primary data by means of 
plain spline interpolation (continuous is both the spline itself, and its first and sec-
ond derivative). Formulae of spline-interpolation: 

fM = f(xM), f0 = f(x0), f1 = f(x1), f2 = f(x2), x0xx1, u = (x–x0)/(x1–x0)             (20) 

(0<x0xM = x1x0 = x2x1, x0xx1)f(x)  spl(fM,f0,f1,f2,u)                (21) 
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Formulae of spline-interpolation application: 
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where unmq is the equation root 
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Root of each equation of the type (32) is sought by approximation method with a 
roughness of 10–9 (in a day).  
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3.5. Calculation of FVR integrals by means of secondary initial data 
After pass from (2) to (11), further siplification consists in approximate ana-

lytic integral evaluation by . Employing decomposition 
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and omitting, for short, arguments t,  of the above introduced functions αm , D0, 

D1, E,  and auxiliary functions , F0, h0, …, h5, we find 
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
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
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





  01

3
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9
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35
EDD

E
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4

5 2048

315
D

E
h                                 (39) 

 
During integration (1+μ(t,φ))F0(t,φ) by φ and by t the summand μ(t,φ) due to its 
smallness will be dropped out: 


2

1

)(),( 221

nm

nm

t

t

nm dttFI  , 

















  





dtF
tr

r
utF ),(

)(
)(

2

1

1

2

0
02             (40) 

),(
),(

)(
),( 02/3

0

1 


 tF
tC

tF                                 (41) 

Before integration by φ, its extremes shall be specified (not to pass in vain the val-
ues of φ, whereby αm=0). Pair (φ1,φ2) will be changed by the pair (φ1m,φ2m) and in 

case of φ1M<φ2M we shall calculate the integration pace (φ2Mφ1M)/set, approxi-
mately by 1 degree. Omitting, for short, the argument t of the above introduced 

functions r,   and auxiliary functions F1, φ1M, φ2M, Н, В, , Н, Н1, Н2, В, В1, 

В2, we find, that 

r

B
В arcsin , ВН   , 

r

xB
x

)(sin1
arcsin)(

22 



         (42) 
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11   MН , 





  НMН 

2
,max 11 , )( НН       (43) 

22   MВ , 





  ВMВ 

2
,min 22 , )( ВВ       (44) 

)( 12 ННН   , )0(1  Н , 18
2 107.3||  НН                    (45) 

)( 12 ВВВ   , )0(1  В , 18
2 107.3||  ВВ                    (46) 
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180/














 

         (47) 
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1
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


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

 









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1

0
1121

)1(2

1

)()(
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K
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dFdF








     (48) 

Each summand within the integral sum by  is calculated by substitution of subin-
tegral function with a polynom of the 3rd degree5 (polynomial method of the 3rd de-
gree): 




































 
 




)(
2/33

3
32/3

3)(
8

1
)( )1(1

)1(
1

)1(
11

12
1

)1(

KM
KMMKKMMK

MK
MM FFFF

set
dF

KM

MK












    (49) 

__________________________________________________________________ 
(5) In case of polynom of the 1st degree we would get a widely known method of trapezium. We 
were to refuse it, since its characteristical curve “truncation” of subintegral function would result 
in systematic error. The 3rd degree of polynom is minimal among degrees, which provide ac-
ceptable accuracy. 

__________________________________________________________________ 

Integral 
2

1

)(2

nm

nm

t

t

dttF   is taken by an interval at which the ecliptic longitude of 

the Sun center increments by 1 degree. This increment is close to a change of lati-
tude at the pitch of integration by latitude. That is why it is natural to evaluate inte-

gral 
2

1

)(2

nm

nm

t

t

dttF  in the same way, as integral 
 )1(

)(1

KM

MK

dF




 , by method of the 3rd degree 

polynom: 

    )(33)(
8

)( 223/523/42122

2

1

nmnmnmnm
nm

t

t

tFtFtFtF
d

dttF
nm

nm

               (50) 

As a result, practical evaluation of FVR integrals is performed based on sec-
ondary initial data by formulae (1), (40), (50), (41), (48), (49) with the use of (42)–

(47), (35)(39), (12)–(13), (7)(10), (3)(4). 
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3.6. Resulting roughnesses of evaluations 
 Resulting roughness of evaluation for each FVR integral will be at most few 
percents from average module of its interannual variability. Relative roughness 
does not exceed 0.005% for FVR integrals in the vicinity of poles and 0.00005% 
for FVR integrals in the vicinity of equator. 
 Subsequent to the results of evaluation for the period from 3000 BC till 2999 
AD we formed a base of radiation data for arriving (in the absence of atmosphere) 
solar radiation to latitude zones of the Earth (5 degrees spread) with time pitch 
equal to 1/12 part of tropic year. Base of radiation data is set at the site “Solar radi-
ation and climate of the Earth” (http://solar-climate.com/en/ensc/bazard.htm). 

4. Secular trends in variation of arriving solar radiation 
Secular variability has been evaluated by difference of arriving radiation 

values (J/m2) during the last (2999 AD) and the first (3000 BC) year of the time 
interval for corresponding latitudinal zones. The results show the decrease for this 
period of solar radiation arriving to the outer fringe equal to 1.16E+09 J/m2 or 
0.339% from average annual value of solar radiation arriving during this period 
(Fedorov, 2012, 2015). This trend (fig. 1) is determined by secular variations of el-
lipticity, Earth axis inclination and longitude of perihelion (Milankovich, 1939).  

 
Fig. 1. Secular variation of solar radiation arriving to the Earth (in the ab-

sence of atmosphere) within the interval from 3000 BC till 2999 AD, J/m2. 
Reducing stream of solar radiation, arriving to the Earth ellipsoid during 

tropic year in districts below 45  of latitude at each hemisphere tends to increase 
and above 45  – to reduce (fig. 2).  
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Fig. 2. Distribution of difference in solar radiation arriving to the Earth in 

the absence of atmosphere in 2999 and in 3000 BC to the corresponding latitudinal 
zones, J/m2. 

Reduction of radiation arriving to polar areas during the whole period 
achieves 1.58Е+08 J/m2, which is 2.8% in relation to average (for the whole inter-
val) value of arriving radiation for latitudinal zones of 85 -90  geographic latitude. 
Increase within the equatorial area (exceeding polar districts by area, approximate-
ly by 2.7 times) is substantially smaller, and at equator region it equals to 
3.32Е+07 J/m2 (0.25%). Consequently, one of the trends in variation of arriving 
solar radiation at present day is intensification of latitudinal contrast (increase of 
inter latitude gradient of solar radiation arriving to the outer fringe). 

We also analysed solar radiation arriving to the outer fringe during winter 
and summer semester. Secular variation was evaluated by difference of values of 
arriving solar radiation (J/m2) during the last (2999 AD) and the first (3000 BC) 
year of the time interval for corresponding semesters. During winter semester (for 
Northern hemisphere) (fig. 3) we registered decrease of arriving solar radiation 
within the latitudinal area from 10  S.l. to 90  S.l.  
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Fig. 3. Distribution of difference in solar radiation arriving to the Earth in 

the absence of atmosphere in 2999 and in 3000 BC in winter semester (for the 
Northern hemisphere) to the corresponding latitudinal zones, J/m2. Approximation 
is 3rd degree polynom. 

The decrease achieves the maximum value in this season in the Southern po-
lar area -1.56Е+08 J/m2, which equals to 2.83% from the average annual (for the 
whole period) value of solar radiation arriving to this latitudinal zone. Decrease 
average for the 5-degree latitudinal zone during this interval (3000 BC-2999) 
equals to -7.55Е+07 J/m2. Total decrease of arriving radiation in the area of de-
crease is 1.21Е+09 J/m2. Positive values during this season are characteristic for 
the area of 5 -10  of the Southern latitude and for all latitudinal zones to the north 
from this zone. Maximum value is marked in latitudinal zone of 45 -50  N.l. is 
5.42Е+07 J/m2, which equals to 2.04% of average annual value of radiation arriv-
ing to this zone in winter semester (for the Norhtern hemisphere). Increase, aver-
age for 5-degree zone, of arriving solar radiation equals to 3.14Е+07 J/m2. Increase 
within the area of increase is characterised by value equal to 6.29Е+08 J/m2. Over-
all decrease of solar radiation arriving to the Earth (to the outer fringe) during win-
ter semester (for the Northern hemisphere) equals to -5.79 J/m2. 
 During summer semester (for the Northern hemisphere) (fig.4) increase of 
arriving solar radiation is marked in the area from the zone of 5 -10  N.l. and situ-
ated to the south.  
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Fig. 4. Distribution of difference in solar radiation arriving to the Earth in 

the absence of atmosphere in 2999 and in 3000 BC in summer semester (for the 
Northern hemisphere) to the corresponding latitudinal zones, J/m2. Approximation 
is 3rd degree polynom. 

Maximum increase is a characteristic of the latitudinal zone of 45 -50  S.l. is 
5.41Е+07 J/m2, which equals to 2.038% of average annual value of solar radiation 
arriving to this zone in summer semester (for the Norhtern hemisphere). Medium 
increase, for 5-degree latitudinal zone, in this area equals to 3.14Е+07 J/m2, and 
total (for the area of increase) equals to 6.29Е+08 J/m2. Decrease is marked at this 
time in the area of 10 -15  N.l. and to the north. Maximum decrease is a character-
istic of the zone of 85 -90  N.l. and equals to -1.56Е+08 J/m2, which is 2.831% 
from average annual value of solar radiation arriving to this zone. Decrease, aver-
age for the 5-degree zone, equals to -7.55Е+07 J/m2, total (for the decrease area) is 
-1.21Е+09 J/m2. Total decrease (for the Earth) of arriving solar radiation in sum-
mer semester (for the Northern hemisphere) equals to -5.79Е+08 J/m2. 
 Thus, increase of arriving solar radiation is marked in winter semesters (for 
hemispheres), and decrease is marked in summer hemispheres. Seasonal variations 
of solar radiation arriving to the outer fringe are hereby flattened.  

The marked trends (intensification of latitudinal contrast and flattening of 
seasonal differences) in variation of arriving solar radiation are connected with 
secular tendency towards decrease of the Earth axis inclination (regarding perpen-
dicular to ecliptic plane) as a result of precession and nutation. It is known, that in 
case of the Earth’s axis inclination increase, radiation arrival to polar regions in-
creases, i.e. latitudinal contrast flattening and seasonal differences intensification 
takes place in hemispheres. In case of gradient angle decrease radiation will grow 
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in subequatorial regions, resulting in intensification of latitudinal contrasts, and 
flattening of seasonal differences (Milankovich, 1939; Monin, Shishkov, 2000) 

 
Conclusion 

Based on astronomical ephemerides DE-406 evaluations of solar radiation 
arriving to the Earth ellipsoid have been performed (in the absence of atmosphere). 
Analysis of calculated values of arriving solar radiation allowed to obtain a number 
of interesting results: 

1. Solar radiation arriving during tropic years to the outer fringe decreases. 
2. Marked increase of solar radiation arriving to the Earth equatorial areas 

and decrease in polar areas. It means that the contemporary epoch is 
characterised with intensification of interlatitudinal gradient in distribu-
tion of arriving solar radiation at the outer fringe. 

3. Marked decrease of arriving solar radiation in summer semesters and in-
crease in winter ones (for hemispheres). This reflects a tendency of sea-
sonal differences flattening in solar radiation arriving to the outer fringe. 

4. Formed database of solar radiation arriving to the outer fringe 
(http://solar-climate.com/en/ensc/bazard.htm). These data may be used in 
physical and mathematical models of climate. 

The obtained picture of  temporal and spatial changes in solar radiation ar-
riving to the Earth may find reflection in radiation and thermal conditions of the 
planet. In such a way, tendency to the increase of interlatitudinal gradient of arriv-
ing solar radiation may be connected with increase of interlatitudinal temperature 
contrasts and intensification of interlatitudinal heat exchange, which is possibly 
one of the reasons for the trend of climate warming in extra tropical regions of the 
Earth.  
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